

Introduction

Lympha is a programming language for medical algorithms. With lympha you make decision trees, that describe what diagnostics and treatment procedures should be done. With the interpreter [http://lympha-interpreter.readthedocs.io/], the algorithm is calculated on the basis of patient data.

	What should be done? This is the question that medical recommendations and guidelines are trying to answer. These guidelines are usually written in the form of prose or flowcharts. Sometimes the guidelines are used by the patient, but most often it is the health care professionals who use them. Of course, computers could facilitate work. Computers could provide decision support to healthcare professionals, pool data and help the patient implement recommendations in everyday life. The healthcare expert who writes a guideline must at present turn to a technician to make guidelines understandable for a computer. The technician does not take into account in his work other guidelines that affect the outcome of the current ones. This makes the work of transferring guidelines to computer is very inefficient. The LYMPHA project is intended to solve this problem. LYMPHA is a programming language and an interpreter to be able to formulate guidelines in an effective way to computers as well as to other healthcare professionals. The Interpreter is a program that allows your computer to work with guidelines written in the Lympha language. The interpreter takes patient data and inserts it into script for the pathologyna of thedisease.. The result can be presented in a flowchart, or the interpreter can activate external applications based onthe outcome.. The interpreter has the following properties that are not in general-purpose programming languages:

	
	Conditional operator ”if-then” is replaced with threshold numbers.

	General purpose languages have often a ”ravioli” or ”pizza” code structure with the purpose of building a program that has a start, action and end. This language structure does not suit medical purposes very well, since the only known variables are the present parameters. A position on the treatment of current parameters is made continuously. Therefore, Lympha is built around a “spaghetti” code structure.

	Multiple scripts can be processed at the same time by the interpreter

Since the beginning of humanity, medical practitioners have had to know what to do in a given situation and how to do it. The reasoning of what to do in a certain situation is similar as in the McCarthy formalism as IF X THEN Y. The difference in the outcome of treatment has often been depending on the intuition that is hard or impossible to formulate. The intuition and gut feeling might still be a very important part of medical practice, but diagnostics and treatments have become increasingly more detailed formulated since the enlightenment. Fewer and fewer things have been left to chance. Not only have the web of indications, diagnostic tests and treatments become more complicated, but also the reasoning in decisive assessments. E.g. CHADS2 score, Sgarbossa’s criteria, Systemic Inflammatory Response Syndrome (SIRS), Advanced Trauma Life Support (ATLS) etc. Nowadays a medical practitioner should know how to know what to do.

Syntax

Clinical work flow

	The clinical workflow is a series of events. In lympha this is formulated as statements divided by ->. A series of statements ends with semicolon as follows:

	statement -> statement -> statement ;

The name of the statement consists of one word, made of letters a-z, A-Z, digits 0-9, full stop (.), question mark, hyphen (-) and underscore (_).

Some events are procedures that should be executed. In lympha, these events are called procedures. Some events do not directly involve the patient, but data derived from diagnostics. Those events are called factors. Hence there are two types of statements in lympha: procedures and factors.

Differences between procedrues and factors

The name of a procedure always ends with a full stop (.) meanwhile, factors always end with a question mark (?).

Depending on if a procedure should be executed or not, it has a value of 1 or 0. By default, all procedures have the value set to 1.

	The value of a factor can be declared in three ways:

	
	
	Make it equal to a real number (ℝ). Example:

	body_temperature_in_C? = 35.8 ;

	
	The value of the factor can also be dependent upon other factors. These dependent factors are called binary factors. The binary factor name in question is followed by one equal sign (=). Then follows a tipping point. After that, there is an operator. Below are valid operators listed:

	
Valid rational operators

	relational operator

	read as

	==

	if and only if (≡)

	>

	greater than

	>=

	greater than or equal (≥)

	<

	lesser than

	<=

	less than or equal (≤)

	!=

	not equal to (≠)

After the operator follows either the name of a non-binary factor or a series of binary factors.

	
	In the case where the binary factor depends on a non-binary factor:

	binary-factor = tipping-point operator non-binary-factor ;

	Example:

	hypothermia? = 36 < body_temperature_in_C? ;

	
	In the case where the binary factor depends on a non-binary factor:

	binary-factor = tipping-point operator |{non-binary-factors}|

	Example:

	resp? = 1 < |{tachypnea?, pCO2_blood_less4.3?}| ;
SIRS? = 2 =< |{ hypothermia?, temp_above_38?, HR_greater_90?, resp?, wbc_less4000?, wbc_greater12000? }| ;

In order for a procedure or a binary-factor to get the value 1, at least one parent-statement must have the value 1.

Tutorials

Here are some code examples:

MADRS-S? = 15 ;

mild_depression_indication? = 13 <= MADRS-S? ;
moderate_depression_indication? = 20 <= MADRS-S? ;
moderate_depression_indication? = 24 >= MADRS-S? ;
severe_depression_indication? = 35 <= MADRS-S? ;

MADRS-S. -> mild_depression_indication? ;
MADRS-S. -> moderate_depression_indication? ;
MADRS-S. -> severe_depression_indication? ;

Index

 nav.xhtml

 Table of Contents

 		
 <no title>

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/logo.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

